
The Grouches. Part 2: Design Alternatives 1

The OSCAR Redesign Project
Part 2 Design Alternatives

CS3750 User Interface Design

The Grouches:
Jared Salzmann
Jack Gruendler
Jason Tongco
Carlos Rios

The Grouches. Part 2: Design Alternatives 2

Table of Contents

Introduction 3

Requirements Summary 3

Design Space 3

Design Alternatives 4

 Calendall 4
 Rationale 4
 Illustrations 5
 Story Boards 8
 Use Case Scenarios 13
 Assessment of the Design 15
 Action Counts 15
 Pro/Con List 16

 Class Basket 16
 Rationale 16
 Illustrations 17
 Story Boards 20
 Use Case Scenarios 22
 Assessment of the Design 23
 Action Counts 23
 Pro/Con List 24

 RequireGraph 25
 Rationale 25
 Illustrations 26
 Story Boards 31
 Use Case Scenarios 33
 Assessment of the Design 35
 Action Counts 35
 Pro/Con List 36

 Comparison Between Designs 37

Reflections 37

The Grouches. Part 2: Design Alternatives 3

Introduction

This OSCAR redesign is, first and foremost, not an overhaul of the backend. Such
changes are beyond the scope of this project. This redesign is focused upon the user
experience and placing within easy reach of the user the most-used or most-requested
functions.

Requirements Summary

First and foremost, the redesigned OSCAR should have easy access to the functions
students use frequently. Specifically, looking up classes, registering classes, and viewing
schedules should be accomplished with a minimum of mouse clicks. It should be easy to
navigate for the first time without the help of FASET volunteers. It should integrate more
powerful search features, such as searching by GPA, and display features, such as
plotting classes on a campus map. Display of information should be better organized: the
user shouldn't have to look at several different pages to find out everything about a class
(in contrast to the current system, which requires the user to look at the search results,
click on the CRN for the class, then click “View Catalog Entry” to see all information). It
should be more customizable and intelligent, by having persistent user settings (for things
like search term and campus), with reasonable defaults (such as “current semester” and
“main Atlanta campus”). It should not break when pages are opened in multiple
windows.

Design Space

The design spaces that we have created will attempt to make navigation through the
OSCAR system and completing tasks with speed and ease. One such design aspect we
have is to present as much information on a single page without it being cluttered this
aspect will lessen the amount of pages needed to navigate through, such as information
about a course. Another design aspect is to prioritize tasks by presenting the most
important tasks (i.e. registration, permit overload, etc.) upfront so that the user will not
have to waster precious time navigating the site to accomplish them. One of the most
important aspects is to not have users be set up for a fall. One example is having the user
able to select a class that the user can’t register for because of a major restriction or
prerequisite; our designs will alert the user before such a thing will happen.

With the task of designing an interface comes the difficulty realizing certain
requirements. One requirement is that we most likely won’t be able to display the amount
of information we want to into a single page. Another is the lack of customizability in the
layout of the interface, such as moving certain parts of the page into other areas. Another
is the lack multiple methods in completing a task, such as registering for a class; doing so
will most likely go against the rules made by Georgia Tech in how the class registration
should be implemented (i.e. shortcuts that give some users an advantage in registering for
classes much faster).

The Grouches. Part 2: Design Alternatives 4

There are several tradeoffs in designing this interface. The tradeoffs discussed were:

• More information without being cluttered
• Deep vs. shallow navigation
• Visual vs. text based
• Constrained vs. wide open (only show available classes vs. all classes)
• Modal vs. combined vs. simplified
• Dynamic vs. sequenced (Ajax vs. POSTS) (synchronous vs. asynchronous)

There are multiple methods in how our interface could support certain tasks better than
the current OSCAR system. One of them, most importantly, is registering for available
classes faster. It may not seem obvious, but minutes, even seconds, make the difference
when registering for classes that a user wants. In order to make registering faster, in terms
of getting the desired classes and completing the task overall, our design will alert what
classes they must take, furthermore which ones will be available. Another task that can be
done much better than the current OSCAR site is navigation. The current layout and
hierarchal design of the webpage brings confusion and focuses on functionality rather
than priority. Our design will focus on both to make users accomplish their tasks faster
and with ease.

Design Alternatives

Calendall

Rationale

The goal of this design is to help the student organize their classes and other school
activities in a visual way on a weekly schedule. Calendar systems are fairly common and
most students are familiar with them. A visual calendar provides direct manipulation of
classes as they relate to time. The calendar also allows excellent visibility because it
shows the classes that are registered and the most common class conflict students have
(time conflict). With the use of a simple fuzzy search instead of advanced search
parameters, this design eliminates clutter. As we found in research, students spend a lot
of time deciding which classes they want to take before they are aloud to register. To help
the students in this situation, the calendar system has the ability to have multiple
calendars to work with at once. Students can create multiple schedules that they would
like to take. When it is time to register, the student can see which of the previously
created schedules has all the classes open. The student then registers for all classes in the
schedule with one click of a button.

The Grouches. Part 2: Design Alternatives 5

Illustrations

Sketch 1

The Grouches. Part 2: Design Alternatives 6

Sketch 2

The Grouches. Part 2: Design Alternatives 7

Sketch 3

The Grouches. Part 2: Design Alternatives 8

Story Boards

Standard Screen

The Grouches. Part 2: Design Alternatives 9

User Clicks Search Engine

The Grouches. Part 2: Design Alternatives 10

User Types “calc 1”

The Grouches. Part 2: Design Alternatives 11

Search Results Are Populated

The Grouches. Part 2: Design Alternatives 12

User Clicks on “Math 1501 – A2 – Calculus 1” and the description pops up

The Grouches. Part 2: Design Alternatives 13

User Adds the Class to the Schedule

Use Case Scenarios

Name: The student adds Calculus 1 to the weekly schedule.
Stakeholders: The student
Preconditions: The student must be logged in and at the class registration page.
Post conditions: A Calculus 1 class is on the weekly schedule.
Main Success Scenario:

1) The student clicks in the “Class Search” text box field
2) The student types in “calc 1” and presses enter.
3) The area below the “Class Search” text box field expands to show the results of the
search. “Math1501A”, “Math1501B”, and “Math1501C” are the search results. Limited
class information is displayed in this area.
4) The student mouses over “Math1501A” and the “Math1501A” result is highlighted
along with it’s location in the weekly schedule—based upon the class time.
5) The student clicks on “Math1501A” and an overlay screen opens up with all of the
detailed class information such as: prerequisites, location on campus map, seats
remaining, etc.
6) The student closes the overlay screen.

The Grouches. Part 2: Design Alternatives 14

7) The student double clicks the “Math1501A” search result and the class is now added to
the weekly schedule.

Extensions and Alternative Flows:
If there are class conflicts with previously added classes, the color of the highlighting changes.
Open Issues: None

Name: The student adds a class at 2pm MWF.
Stakeholders: The student
Preconditions: The student must be logged in and at the class registration.
Post conditions: A class is registered at 2pm MWF.
Main Success Scenario:

1) The student puts his mouse on the 2pm block in the Monday column. The same time
block in Wednesday and Friday are highlighted.
2) The student clicks once
3) The area below the “Class Search” text box field expands to show the results of the
search. All classes that start at 2 or 2:30 pm are displayed including. “Math1501B” and
“CS1371C” are the search results. Limited class information is displayed in this area.
4) The student mouses over “CS1371C” and the “CS1371C” result is highlighted along
with it’s location in the weekly schedule—based upon the class time.
5) The student clicks on “CS1371C” and an overlay screen opens up with all of the
detailed class information such as: prerequisites, location on campus map, seats
remaining, etc.
6) The student closes the overlay screen.
7) The student double clicks the “CS1371C” search result and the class is now added to
the weekly schedule.

Extensions and Alternative Flows:
If there are class conflicts with previously added classes, the color of the highlighting
changes.
Open Issues: None

Name: The student makes a copy of a weekly schedule.
Stakeholders: The student
Preconditions: The student must be logged in and at the class registration. The student must have
a weekly schedule filled with desired classes.
Post conditions: Two weekly schedules are now available.
Main Success Scenario:

1) Clicks on the drop down arrow next to the “Schedule 1” tab at the top of the screen.
2) The student selects the “Duplicate Schedule” button
3) A new weekly schedule called “Schedule 2” is added next to the “Schedule 1” tab.
4) The student clicks on the “Schedule 2” tab and sees the same classes on that schedule
as schedule 1.

Extensions and Alternative Flows:

The Grouches. Part 2: Design Alternatives 15

The student can change each schedule independently. The student can add, delete, move,
and rename schedules.
Open Issues: None

Assessment of Design

This design is an excellent way to eliminate time conflicts and to create multiple versions
of schedules so that the student can choose from one of the alternate schedules if one of
his classes is full. The design is familiar to students who have used calendar programs.
Searching is also familiar to students who use search engines that try to infer what you
are looking for rather than a straight, comparison search. The use of highlighting, colors,
and visual representation of classes on a weekly schedule makes this design have high
observability. This design is flexible because it allows the user to maintain separate
weekly schedules (multithreading) that are persistent between logins. It also allows the
user to add classes in multiple ways: text search and time selection.

The design is limited because so much space is taken up by the weekly schedule. The
search results cannot have all the information that students need. A possible work around
would be to have the option to make the calendar small and the search results large.
Students may not first realize that classes can be searched for by selecting a time on the
calendar. The design may not be flexible enough to serve all users. For example, if a user
is currently registering for classes, there is no need to create and save multiple weekly
schedules.

Action Counts

Alice wants to register for all the CS classes she can take. The CS classes that she can
take are: CS1371 and CS2110. There are two CS1371 sections, section A is at a time that
is conflicting with POL1101—a class she must take. Action counts from only POL1101
registered, to the three classes registered.

1. Click “Search Engine”
2. Home to “General Search”
3. Type “CS1371”, press enter (6 steps)
4. Hover over CS1371A, see there is a conflict
5. Hover over CS1371B, see no conflict
6. Double click CS1371B, see it added to schedule
7. Click “Search Engine”
8. Home to “General Search”
9. Type “CS2110”, press enter (6 steps)
10. Hover over CS2110A, see no conflict
11. Double click CS2110A, see it added to schedule
12. Home to “Preference 1” schedule tab
13. Choose menu and select “Register All These Classes”

The Grouches. Part 2: Design Alternatives 16

Total Steps: 23

Pro/Con List

Calendall
Pro Con

Good for planning
alternate
schedules

Class details are
muted

Time Conflict
Visibility/Resolution

Campus map isn't
integrated

Calendar is
common
interaction Not class centric
Could integrate
with other calendar
programs

No requirement
consideration

Could show things
other than classes
in calendar

Advanced
searches require
extra step

Fuzzy search good
for most searches

Not all users
prepare in this way
(create multiple
schedules)

Register for all
classes at once

Class Basket

Rationale

This design allows for "quick and easy" mass registration. While this can lead to
undesirable, automatically generated schedules, Class Basket allows for filters and search
criteria to be applied pre- and post-search, helping the user to narrow the results to those
which are relevant. The driving impetus for this design, however, is familiarity. Class
Basket looks and operates similarly to shopping websites such as ebgames.com and
newegg.com. It is this familiarity which will enable new users to quickly adapt to Class
Basket. It leverages previous knowledge and experience to get the user quickly
acclimated and searching and registering for classes.

The Grouches. Part 2: Design Alternatives 17

Illustrations

Sketch 1

The Grouches. Part 2: Design Alternatives 18

Sketch 2

The Grouches. Part 2: Design Alternatives 19

Sketch 3

The Grouches. Part 2: Design Alternatives 20

Story Boards

Main screen

The Grouches. Part 2: Design Alternatives 21

The user enters a keyword and a major.

The Grouches. Part 2: Design Alternatives 22

Search results are displayed

Use Case Scenarios

Persona: Joan is a 3rd year INTA major. She's already taking her
required major classes, but she wants to try her hand at a CS course.
She wants a CS course that has a minimum of programming, but is still
interesting.

Name: Registering for one class (CS 4803LK)
Stakeholders: Joan
Precondition: Joan must be logged into OSCAR.
Post condition: Joan is registered for the class she is looking for.
Main Success Scenario:
 1. Joan searches for CS 4803.
 2. Sections of CS 4803 appear and are available for registration.
 3. The student clicks on the "Register Now" button for the LK section.
 4. The student is now registered for the class.
Extensions and Alternative Flows:
 1. If the student does not meet the class prerequisites or if no sections matching
search criteria have open seats, the "Register Now" button is grey is not clickable.

The Grouches. Part 2: Design Alternatives 23

Open Issues: none

Name: Checking a class' prerequisite information
Stakeholders: Joan
Precondition: Joan must be logged into OSCAR.
Postcondition: Joan has found the relevant information.
Main Success Scenario:
 1. Joan searches for CS 4803.
 2. Sections of CS 4803 appear.
 3. Joan finds the section she wants and clicks the "More Info" button.
 4. A pop-up window containing the course catalog entry, required texts, instructor
contacts, etc. appears.
Extensions and Alternative Flows:
 1. If the class has only recently been offered, it may not have complete information
available.
Open Issues: none

Assessment of Design

While sporting an interface immediately familiar to web-savvy students, Class Basket
should be easy enough to be used by students who may not be as web-centric as their
peers. The layout is such that one needs only glance to determine how a particular item
should function. There are not many hidden functions, those being limited to the drop
down boxes used in the initial search and the post-search filters available immediately
above the search results. Functions for class-to-class comparisons and one-click
registration further streamline students' decision-making process.

Class Basket's limitations are that there isn't a live-updating list of classes and there is no
apparent calendar function. There is also no display of total and available seats in a class,
though the system will disable registration for closed classes, pending overrides. The
other potential problem is that a UI as extensive as Class Basket's may create undue
slowdown during heavy periods of use.

Action Counts

Alice wants to register for all the CS classes she can take. The CS classes that she can
take are: CS1371 and CS2110. There are two CS1371 sections, section A is at a time that
is conflicting with POL1101—a class she must take. Action counts from only POL1101
registered, to the three classes registered.

Adding 1371:
1. change "major" drop box to "CS" (3)
2. type "1371" in keywords box (5)
3. click "search" (1)

The Grouches. Part 2: Design Alternatives 24

4. sections A and B come up; A is unavailable ("register now" is
grayed out) but B is available ("register now" is clickable) (2)
5. click on section B's "register now" button (1)
[subtotal: 12]

Adding 2110:
1. highlight "1371" in the keywords box and type "2110" (5)
2. click "search" (1)
3. see 2110A is available (1)
4. click on 2110A's "register now" (1)
[subtotal: 8]

total: 20

Pro/Con List

Class Basket
Pro Con

Fast way to
develop schedules

Less direct control
by users

Familiar system of
shopping NP-hard problem

System does the
hard work

Lack of fine
control of
scheduling

Stores all desired
classes

Lead to
undesirable
schedule

Register for all
classes at once

No requirement
consideration

Campus map isn't
integrated

The Grouches. Part 2: Design Alternatives 25

RequireGraph

Rationale

We discovered in the requirements gathering phase that students often spend a lot of time
deciding what classes to take, and that classes are often chosen based on whether they're
required for the student's major or not. Therefore, presenting the classes to the user in a
way related to major requirements makes sense because it provides a good visualization
of progression through degree program requirements and prerequisites, and thus makes it
easy to see what should be taken next. Conversely, it also reduces the number of
irrelevant classes that clutter up the results page of the current system (when users don't
bother to carefully craft their search criteria, as is often the case). Finally, because its
hierarchy is based on the particular situation of the student rather than the organization of
the Institute, it can be much quicker for the student to register for classes in different
areas because they don't have to re-search.

The Grouches. Part 2: Design Alternatives 26

Illustrations

The Grouches. Part 2: Design Alternatives 27

The Grouches. Part 2: Design Alternatives 28

The Grouches. Part 2: Design Alternatives 29

The Grouches. Part 2: Design Alternatives 30

The Grouches. Part 2: Design Alternatives 31

Story Boards

Initial view

The Grouches. Part 2: Design Alternatives 32

Node for Math3012 selected

The Grouches. Part 2: Design Alternatives 33

After expanding humanities courses and registering for LCC2500A.

Use Case Scenarios

Persona: Bob is a second-year CS student who has chosen the Computational Modeling
and Platforms threads. He needs to take combinatorics (MATH 3012), a humanities
elective (LCC 2500), systems and networks (CS 2200), his last lab science (PHYS 2212),
and objects and design (CS 3240) this semester, but he does not know it yet.

Name: Bob registers for a class that he knows is required by name
Stakeholders: Bob
Preconditions: Bob must be logged in and at the class registration main menu
Post conditions: Bob is registered for MATH 3012
Main Success Scenario:

1) Bob clicks on the item in the main menu labeled “Requirements Graph”
2) The graph of classes, pre-calculated to expand the ones most relevant to Bob,
loads
3) Bob scans the picture, taking note of the bright blue nodes.
4) He glances up at the key, and sees that those blue nodes represent the classes
he could choose to take

The Grouches. Part 2: Design Alternatives 34

5) Among only the blue nodes, he looks for the one labeled “MATH 3012” and
clicks on it
6) A description of the class, including the name of the professor, location, and
meeting times for each section, appears in a pane of the web page below the graph
7) Bob reads the description, picks the particular section he wants, and clicks the
button labeled “Register” next to it.
8) The node labeled “MATH 3012” turns red to show that it's currently registered
9) The “Register” button that he clicked becomes disabled and the list entry for
that section will become highlighted

Extensions and Alternative Flows:
1) If all the sections of MATH 3012 are full, have a time conflict with Bob's
existing schedule, or are otherwise unavailable, its node will be grayed out. If a
section is unavailable, its list entry will be grayed out. If a section is unavailable
for reasons other than a schedule conflict, the “Register” button on the
description pane will be disabled.
2) If there is a schedule conflict:

1) Bob can hover his cursor over the section (in the detailed description)
he wants and the conflicting class in the graph will be highlighted in red.
2) Bob can click the “Register” button for that section anyway, upon
which a dialog box will prompt for confirmation that he wants to de-
register the conflicting class

Open Issues: None

Name: Bob registers for an interesting humanities elective
Stakeholders: Bob
Preconditions: Bob must be logged in and at the class registration main menu
Post conditions: Bob is registered for LCC 2500
Main Success Scenario:

1) Bob clicks on the item in the main menu labeled “Requirements Graph”
2) The graph of classes, pre-calculated to expand the ones most relevant to Bob
(which, since he is a CS major, do not include most humanities classes), loads
3) Bob sees a node labeled “Humanities” and double-clicks on it to expand it
4) Bob scans the blue nodes that have expanded from the “Humanities” node
5) Bob finds one that looks interesting, in this case LCC 2500, and clicks on it
6) A description of the class, including the name of the professor, location, and
meeting times, appears in a pane of the web page below the graph
7) Bob reads the description, and decides to take the course
8) Bob picks the particular section he wants, and clicks the button labeled
“Register” next to it.
9) The node labeled “LCC 2500” turns red to show that it's currently registered
10) The “Register” button that he clicked becomes disabled and the list entry for
that section will become highlighted

Extensions and Alternative Flows:
1) If all the sections of MATH 3012 are full, have a time conflict with Bob's
existing schedule, or are otherwise unavailable, its node will be grayed out. If a

The Grouches. Part 2: Design Alternatives 35

section is unavailable for reasons other than a schedule conflict, the “Register”
button on the description pane will be grayed out.
2) If Bob decides, in step 7 above, not to take the course, he goes back to step 5.
Open Issues: None

Assessment of Design

For its purpose -- figuring out graduation requirements, and registering for the needed
classes -- RequireGraph excels. Classes can be found with significantly less effort than in
traditional search-based interfaces, and prerequisites are expressed in a much more
obvious and intuitive way.

However, it is not without limitations: first, the graph is a limited metaphor, and does not
lend itself nearly as well to finding classes by other criteria (e.g. meeting times). When
the number of valid options are high, as when selecting humanities electives, for
example, the number of "relevant" nodes could be large enough to make the graph not fit
on the page, both making panning necessary and (more importantly) overwhelming the
user. It is also not particularly well-suited to resolving conflicts.

Action Counts

Alice wants to register for all the CS classes she can take. The CS classes that she can
take are: CS1371 and CS2110. There are two CS1371 sections, section A is at a time that
is conflicting with POL1101—a class she must take. Action counts from only POL1101
registered, to the three classes registered.

1. Find the node for CS 1371
2. Click on the node for CS 1371.
3. See that only section B is available because section A has a schedule
conflict
4. Click on the "Register" button for section B
5. Find the node for CS 2110
6. Click on the node for CS 2110
7. Click on the "Register" button for the only section, section A

Total steps: 7

The Grouches. Part 2: Design Alternatives 36

Pro/Con List

RequireGraph
Pro Con

Visualization for
what you need to
take

Can't search/display
results well

Eliminates
superfluous classes

Color
coding/naming/shapes
requires a key

Directly manipulate
visual objects

Can end up with too
many objects on
screen

User has control of
what is visible

Position of object
changes often

Can alter graphing
options (sort by…)

Browser running
animated graphics

Conflicts/scheduling
doesn't fit the
paradigm

Lack of fine control of
scheduling

Could be CPU
intensive

Campus map isn't
integrated

The Grouches. Part 2: Design Alternatives 37

Comparison Between Designs

Criteria Calendall
Class
Basket RequireGraph

Planning for alternate schedules Very Good
Very
Good Very Poor

Time Conflict
Visualization/Resolution Very Good

Very
Good Neutral

Ease of search Good Neutral Very Good
Result Relevance Poor Neutral Very Good

Register for all classes at once Very Good
Very
Good Very Poor

Class Detail Visibility Poor
Very
Good Poor

Campus Map Integration Poor Neutral Poor
Requirements/Prereq Visibility Very Poor Poor Very Good

Speed To Register Poor Good Very Good
Fine Control Of Schedule Very Good Neutral Poor

No Clutter Very Good
Very
Good Very Good

Direct Manipulation Good Neutral Very Good
Predictability Good Good Good

Synthesizability Good Good Good

Familiarity Metaphor Good
Very
Good Very Poor

Consistency Neutral Neutral Good
Dialog Initiative Good Good Neutral
Multithreading Poor Poor Poor

Task Migratability Neutral Good Very Good
Substitutivity Good Good Very Poor

Customizability Poor Poor Poor
Observability Good Neutral Good

Doesn't set user up for fall Good Poor Very Good
Recoverability Poor Good Neutral

Task Conformance Poor Neutral Good

Qualifiers: Very Poor - Poor - Neutral - Good - Very Good

Reflections

We were able to quickly brainstorm three ideas and were able to flesh out ideas. The
process of drawing diagrams, providing rationale, assessment, etc took a lot longer. It
took longer than expected. We probably started a to late and ended up staying up late. We
had one person create the final illustrations for the poster but it was probably too much
work for one person.

